

USING STRUCTURE FROM MOTION TO DOCUMENT ARCHAEOLOGICAL EXCAVATIONS: A CASE STUDY FROM CENTRAL ITALY

GIOVANNI SVEVO

Anthropology Lectures Series

Oregon State University November 15, 2019

ABOUT ME

2002

BA, Archaeology

2007

Professional Doctorate, Archaeology

STRUCTURE FROM MOTION

- The possibility to gather massive and accurate information without long presence on site.
- Moving of interpretation from the field to a post-processing step.
- Reduced costs and highly automated workflow.

THE INVENTION OF PHOTOGRAMMETRY: AIMÉ LAUSSEDAT (1819-1907)

- Photogrammetry is the process of making measurements of features through analysis of overlapping photographs.
- Invented by French Army surveyor, Aimé Laussedat
- Great technical skill and extensive manual calculation were required

Image source: http://www.geometres-francophones.org/

EVOLUTION OF PHOTOGRAMMETRY

Image source: https://www.aboutcivil.org/

- Aerial topographic survey of large areas
- In the last decades of the 20th century efforts to automate the process
- In the early 1990's advent of digital photogrammetry

Image source: https://www.researchgate.net/

MULTI-IMAGE PHOTOGRAMMETRY

"The term 'Multi-image Photogrammetry' (sometimes used interchangeably with 'Structure from Motion') is used to describe an approach to photogrammetry, where stereo pairs are no longer the focus. Instead much larger datasets of overlapping digital images of a feature taken from different positions can be loaded into software capable of feature matching and reconstruction of 3-Dimensional models, with minimal manual input."

John McCarthy, 2014

Image source: https://www.researchgate.net/

CHARACTERISTICS OF SFM

- Use of consumer-grade digital cameras
- High degree of overlap between images
- Highly automated low-cost or free software
- Scale-independent
- Easy implementation with little specialistic knowledge

GIS Layers:

✤ Cadastral map

GIS Layers:

Cadastral mapSewage and electrical lines

GIS Layers:

Cadastral map
Sewage and electrical lines
Aerial imagery

GIS Layers:

Cadastral map
Sewage and electrical lines
Aerial imagery
Historic maps

GIS Layers:

Cadastral map
Sewage and electrical lines
Aerial imagery
Historic maps
Excavations and GCP

 \odot

Prospetto SUD

Planimetria (scala 1:50)

Prospetto EST

🗹 Þ 801	323915.404000	4696670.697000	453.996000	0.005000	0.019106	5
🗹 Þ 802	323914.982000	4696667.712000	454.051000	0.005000	0.009258	5
🗹 🏴 803	323913.501000	4696667.396000	454.127000	0.005000	0.009269	4
🗹 🏴 804	323911.946000	4696667.254000	454.174000	0.005000	0.012035	2
2 🔁 🔁	323910.090000	4696667.590000	454.173000	0.005000	0.007363	2
🗹 Þ 806	323909.916000	4696669.585000	454.160000	0.005000	0.004608	1
🗹 🏴 807	323909.717000	4696672.066000	454.165000	0.005000	0.008369	2
🗹 Þ 808	323909.702000	4696674.685000	454.168000	0.005000	0.019730	2
🗹 Þ 809	323911.343000	4696674.818000	454.153000	0.005000	0.002569	4
🗹 Þ 810	323913.364000	4696674.573000	454.096000	0.005000	0.018571	4
🗹 🏴 811	323915.309000	4696674.541000	454.055000	0.005000	0.010452	3
🗹 Þ 812	323915.343000	4696672.608000	454.065000	0.005000	0.016563	2
🗹 Þ 888	323914.883000	4696675.671000	454.253000	0.005000		0
Total Error						
Control points					0.012752	
Check points						

Step 1 – Control Points

- 5 Mpx resolution at least
- 60% of side overlap
- 80% of forward overlap
- Avoid plain/monotonous and glittering surfaces

Step 2 – Image Capture

Step 3 – Image Alignment

Step 4 – Dense Cloud

Step 5 – Build Mesh

Step 6 – Build Texture

Projection Type: Geographic WGS 84 / UTM zone 33N (EPSG::32633 Parameters Source data: De Interpolation: Point classes: All Region Setup boundaries: 323907.439	Planar 3) ense dou abled (d	(Id	○ Cylindri	cal () () () () () () () () () ()	
Type: Geographic WGS 84 / UTM zone 33N (EPSG::3263: Parameters Source data: Interpolation: Point classes: All Region Setup boundaries: 323907.439	Planar 3) ense clou abled (d	(id lefault)	Cylindri	cal	
WGS 84 / UTM zone 33N (EPSG::3263: Parameters Source data: De Interpolation: En Point classes: All Region Setup boundaries: 323907.439	i) inse dou iabled (d	ıd lefault)	▼ Select.	 • • 	
Parameters Source data: De Interpolation: En Point classes: All Region Setup boundaries: 323907.439	nse dou	ıd lefault)	Select	•	
Parameters Source data: De Interpolation: En Point classes: All Region Setup boundaries: 323907.439	inse clou iabled (d	ıd lefault)	Select.	•	
Parameters Source data: De Interpolation: En Point dasses: All Region Setup boundaries: 323907.439	ense clou iabled (d	ıd lefault)	Select.	•	
Parameters Source data: De Interpolation: En Point classes: All Region Setup boundaries: 323907.439	ense clou iabled (d	ıd lefault)	Select,	• •	
Source data: De Interpolation: En Point classes: All Region Setup boundaries: 323907.439	ense clou nabled (d	ıd lefault)	Select.	•	
Interpolation: Er Point dasses: All Region Setup boundaries: 323907.439	abled (d	lefault)	Select.	•	
Point dasses: All Region Setup boundaries: 323907.439			Select.		
Region Setup boundaries: 323907.439					
Region Setup boundaries: 323907.439					
Setup boundaries: 323907.439					
	-	32391	7.849	X	
Reset 4696664.368	-	4696677.339		Y	
Resolution (m): 0.00471367	0.00471367				
Total size (pix): 2208	x	2751			

Step 7 – Build DEM

📕 Build Orthomosaic 🛛 🕹 🗙							
r ▼ Projection							
Type: Geograph 	nic 🔘 Planar	O Cylindrical					
WGS 84 / UTM zone 33N (EPSG::32633) 👻 🐼							
Parameters							
Surface:	DEM	-					
Blending mode:	Mosaic (default)	-					
Enable hole filling							
Enable back-face culling							
Pixel size (m):	0.0011784	x					
Metres	0.0011784	Y					
O Max. dimension (pix):	4096						
Region							
Setup boundaries:	-	x					
Estimate	-	Y					
Total size (pix):	x						
OK Cancel							

Step 8 – Build Orthomosaic

Step 9 – QGis

Step 9 – QGis

• Cost Effective – Low-cost or Free Software, Little specialistic knowledge

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made
- Legacy datasets Technique can be applied to historical images. Contemporary images can be re-processed

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made
- Legacy datasets Technique can be applied to historical images. Contemporary images can be re-processed
- Self-Occlusion It allows to build 3D models of subjects with large amounts of self-occlusion

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made
- Legacy datasets Technique can be applied to historical images. Contemporary images can be re-processed
- Self-Occlusion It allows to build 3D models of subjects with large amounts of self-occlusion
- Accuracy It matches required standards for the accuracy of archaeological surveys

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made
- Legacy datasets Technique can be applied to historical images. Contemporary images can be re-processed
- Self-Occlusion It allows to build 3D models of subjects with large amounts of self-occlusion
- Accuracy It matches required standards for the accuracy of archaeological surveys
- On site Interpretation Risk of replacing on-site interpretation of phasing and context with SfM process

- Cost Effective Low-cost or Free Software, Little specialistic knowledge
- Efficiency Highly automated process, rapid and accurate survey with short recording time
- Flexibility As long as a camera is available some attempt at a photogrammetric survey can be made
- Legacy datasets Technique can be applied to historical images. Contemporary images can be re-processed
- Self-Occlusion It allows to build 3D models of subjects with large amounts of self-occlusion
- Accuracy It matches required standards for the accuracy of archaeological surveys
- On site Interpretation Risk of replacing on-site interpretation of phasing and context with SfM process
- Preservation High volumes of data storage. Multiple output formats

THANKYOU

SUGGESTED READINGS

- McCarthy, J. *Multi-image photogrammetry as a practical tool for cultural heritage survey and community engagement*, Journal of Archaeological Science, Volume 43, March 2014, Pages 175-185
- Waagen, J. New technology and archaeological practice. Improving the primary archaeological recording process in excavation by means of UAS photogrammetry, Journal of Archaeological Science, Volume 101, January 2019, Pages 11-20